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Abstract. In the Teskey Range of the Tien Shan (Kyrgyz Republic), four outburst flood disasters from short-lived glacial lakes 10 

caused severe damages in the downstream part in 2006, 2008, 2013, and 2014. The short-lived lake grows rapidly and drain 

within a few months, due to closure and opening of an outlet ice-tunnel in moraine complex at glacier front. The outburst flood 

of this lake type is a major hazard in this region, it differs from many cases of moraine-dam failure in the eastern Himalaya.  

To clarify how short-lived lakes store and drain water for short period, we examined its recent changes in water level, area, 

volume, and discharge with a field survey and satellite data analysis. Korumdu lake appeared and drained within about one 15 

month during all summers during 2014–2019 except that in 2016. Water-level data recorded by a data logger and time-lapse 

camera images show that the lake appeared and expanded suddenly from July to August in 2017–2019. The timing indicates 

that the lake formed when an outlet ice-tunnel (subsurface channel) drain was blocked by deposition of debris and ice due to 

ice melting, not by freezing of stored water. Based on calculation of UAV DSMs and water level in 2017, the lake's water 

volume reached 234,000 m3 within 29 days, and then the water discharged for 17 days at a maximum rate of 0.66 m3/s. The 20 

small discharge indicates that the diameter of the outlet ice-tunnel was much smaller than those of four short-lived lakes in the 

same range that caused large drainages (12-27 m3/s) in 2006, 2008, 2013, and 2014. As the results, the dimensions of the outlet 

ice-tunnel of short-lived glacial lakes presently are related to the flooding scale. Recent warming temperatures may increase 

both the size of the tunnels and the basin volumes leading to greater hazard from such lakes in the future. In addition, we 

investigated the timing of appearance of 160 short-lived glacial lakes in this region using Landsat-7/8, Sentinel-2, and 25 

PlanetScope satellite images (2013–2018). We conclude that tunnel closure of 117 lakes was due to deposition of debris and 

ice during summer. The appearance of a short-lived glacial lake is inevitable in summer when the melting rate is high. The 

characteristics of this lake type might be shown in another Asian mountain permafrost regions. 
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1 Introduction 30 

Compared to the large proglacial lakes in the eastern Himalayas (Ageta et al., 2000; Komori et al., 2004; Bajracharya et al.,  

2007; Nagai et al., 2017), the northern Tien Shan, Central Asia region instead has many small glacial lakes that are distributed 

at glacier fronts (Janský et al., 2008; Narama et al., 2010; 2015). Drainage events from these small glacial lakes often produce 

debris flows and floods. For example, debris flows in 2006, 2008, 2013, 2014, and 2019 in the Teskey Range, northern Tien 

Shan, caused severe damage including casualties and destroyed bridges, roads, houses, and crops (Narama et al., 2010, 2018; 35 

Daiyrov et al., under review). Such short-lived glacial lakes grow rapidly and drain within a few months (Narama et al., 2010, 

2018; Daiyrov et al., 2018). In the Tajik Pamir, drainage from a short-lived lake that formed within 2 years resulted in 25 

casualties (Mergili et al., 2012). Such lakes drain through an outlet ice-tunnel (subsurface channel) within an ice-cored moraine 

complex (Popov, 1987), and are also called nonstationary lakes (Erokhin et al., 2017), though this term also includes lakes 

with a long lifetime. A short-lived lake can be a severe hazard for local residents because it appears suddenly yet can cause 40 

large debris flows. The short-lived lakes are a major hazard in this region, and this differs from the outburst which caused by 

moraine-dam failure in Himalaya and Andes (Costa and Schuster, 1988; Richardson and Reynolds, 2000; Shreshta 2010; 

Emmer and Cochachin, 2013; Neupane et al.; 2019). 

As such glacial lakes drain through an outlet ice-tunnel, the lake can expand rapidly when the outlet ice-tunnel is blocked due 

to either freezing or deposition of ice and debris (Narama et al., 2010, 2018). Drainage then occurs when the outlet ice-tunnel 45 

opens during summer. Some short-lived glacial lakes reappear every year (Daiyrov et al., 2018), which is behavior they share 

with supraglacial lakes on a debris-covered glacier. Several studies have examined the relationship between supraglacial lakes 

and englacial conduit on a debris-covered glacier (Benn et al., 2000, 2017; Miles et al., 2016; Watson et al., 2016; Narama et 

al., 2017), but this relationship has seen little study for glacial lakes.  

Short-lived glacial lakes appear at depressions formed due to glacier recession or the subsidence of either an ice-cored moraine 50 

complex (Narama et al., 2010, 2018; Daiyrov et al., 2018) or on a depression formed on a surging glacier (Richardson and 

Reynolds, 2000; Kääb et al., 2004). Narama et al. (2018) showed that such short-lived glacial lakes tend to appear with three 

geomorphological characteristics: 1) an ice-cored moraine complex (debris landform containing ice), 2) a depression with a 

water supply on an ice-cored moraine complex or glacier terminus, and 3) the absence of a visible surface outflow channel 

from the depression, indicating the existence of an outlet ice-tunnel. 55 

Previous studies have argued that the recent expansion of glacial lakes in the Tien Shan is linked to climatic warming and 

glacier shrinkage (Bolch et al., 2011; Wang et al., 2013; Kapitsa et al., 2017). In addition, Daiyrov et al. (2018) showed that 

the large variability of glacial lakes was not only related to the local climate condition in the Issyk-Kul Basin, but also to 

regional geomorphological conditions such as the closure and opening of an outlet ice-tunnel. They also pointed out that ice-

cored moraine complexes have developed under mountain permafrost conditions. Ice degradation within such complex results 60 

in moraine formation (Iveronova, 1952; Markov, 1955). Surface changes on an ice-cored moraine complex were confirmed in 
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the Jeruy Glacier front between 1979 and 2016 due to ice melting (Daiyrov et al., 2018), and such changes likely affect the 

outlet ice tunnel and formation of the depressions. 

As changes can occur over very large areas and volumes in a short period of time, drainage features and flood scale are 

extremely unpredictable (Erokhin et al., 2017). Although many short-lived glacial lakes are confirmed in recent years in the 65 

northern Tien Shan (Daiyrov et al., 2018), not all short-lived glacial lakes cause large-scale floods. The difference of flood 

scale remains unclear. A lake's fate depends on whether the dam contains ice (Mergili et al., 2013), and if so, how the outlet 

ice-tunnel closes and opens. However, the mechanisms of closure and drainage remain also unclear. Such hazards can intensify 

dramatically and unexpectedly within weeks or even days (Huggel, 2004). In this study, we predict mechanisms of closure and 

drainage at the Korumdu lake and the reason of different flood scales from shot-lived lakes based on field survey and satellite 70 

data analysis. These new knowledges are important for glacier disaster mitigation.  

The paper is organized as following. To understand the closure and drainage mechanism of the short-lived lake, we investigated 

the recent changes in water level, area, volume, and discharge at Korumdu lake based on field survey and satellite data. The 

Korumdu lake appeared and drained within about one month during all summers in recent years. To clear the reason how the 

outlet ice-tunnel closes in the Korumdu lake, we examined the surface changes around the Korumdu lake in field survey. To 75 

clarify how the other short-lived lakes store and drain water, we investigated the timing of appearance of short-lived lakes for 

the other lakes in this region were studied in 2015–2019 using Landsat-7/8, Sentinel-2, and PlanetScope satellite images. 

Finally, we discussed the reason of outlet ice-tunnel closure at Korumdu lake including other lakes, and the relationship 

between outlet tunnel size and drainage scale including influence of increasing temperature. 

2 Study area 80 

The study area is in the northern part of the Teskey Range and near the south shoreline of the Issyk-Kul Basin, Kyrgyz Republic 

(Fig. 1). The glacier distribution in the western part of the range (3700–4200 m) is lower than the distribution in the eastern 

part (3800–4500 m). The difference is related to differences in annual precipitation, which is higher in the eastern part than in 

the western part. For example, during 1998–2007, the average annual precipitation at the Kara-Kujur station (2800 m) of the 

western part is 255 mm, whereas that at the Tien Shan station (3614 m) of the central part is 378 mm, and that at the Chong-85 

Ashu station (2788 m) of the eastern part is 550 mm (Podrezov and Ryskal, 2019; Fig. 1). Their annual average temperatures 

are 0.1°C (1961–1988), –6.28°C (1995–2011; Kuzmichenok, 2013), and 0.27°C (1995–2005), respectively. Recent glacier 

shrinkage has been smaller in the western than the eastern part of the Teskey Range (Aizen et al., 2006; Narama et al., 2006; 

Kutuzov and Shahgedanova, 2009). 

The glacier-moraine zones of the study area in the northern Teskey Range lie at 3200–4000 m (Daiyrov et al., 2018). Within 90 

these zones, the ice-cored moraine complex (debris landform including ice) at the glacier front developed during the Little Ice 

Age (Dikih, 1982; Shatravin, 2007). The moraines include stagnant ice that separated from the glacier terminus during glacier 

recessions (Iwata, 2005). Four large drainages occurred from short-lived glacial lakes that appeared on the ice-cored moraine 
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complex; specifically, from Kashkasuu (2006), west Zyndan (2008), Jeruy (2013), and Karateke (2014) (Narama et al.,  2010, 

2018).  95 

We ran a field survey at Korumdu lake (41°57ʹ32ʺ N, 77°13ʹ28ʺ E) at 3803 m (Figs. 1, 2). The Korumdu catchment forms the 

largest tributary in the Tong River Basin. The Korumdu glacier occupies an area of 2.35 km2. The dam of Korumdu lake is an 

ice-cored moraine complex. The lake has direct contact with the glacier. In addition, we investigated the timing of appearance 

for 160 short-lived lakes in this region (Fig. 1). 

3 Method 100 

3.1 Field observations at Korumdu lake 

The field survey at Korumdu lake was run during the summers of 2015–2019 (Figs. 1, 2). The survey involved measuring the 

water level and water temperature at the lake bottom with a data logger (Hobo U20) at an interval of 1 h since 21 Aug 2015. 

We also set water-level data loggers (Hobo U20) at lake bottom (water pressure) and ground levels (atmospheric pressure). 

Water-level logger measurements were corrected to water level (meter) using atmospheric pressure data at the ground. A time-105 

lapse camera (Brinto) was also set with an interval of 1 day.  

In addition, we obtained aerial images of Korumdu lake-basin acquired by Phantom-4 (DJI) and JABO H601G (Medix) 

unmanned aerial vehicles (UAVs) with a mounted camera (Ricoh GR) on 21 Aug 2015, 12 Aug 2016, 6 Aug 2017, 20 July 

2018, and 4 Aug 2019. High-resolution orthoimages and digital surface models (DSMs; resolution of 0.2 m) were made using 

the Pix4D mapper (Pix4D SA) of Structure from Motion (SfM) software with ground control points (GCPs). We obtained the 110 

GCPs around the lake using the Trimble GeoExplore 6000 Global Navigation Satellite System (GNSS). The absolute positions 

were accurate to 30–40 cm at GCPs positions by post-processing with data from the Kyrgyz GNSS reference station. We also 

investigated the surface changes in an ice-cored moraine complex around the lake by comparing DSMs obtained in 2015 and 

2016 on ArcGIS 10.5. 

The volume and discharge of the lake in the summers of 2017–2019 were calculated using the daily water level data, UAV 115 

DSMs, and time-lapse data on ArcGIS 10.5. The daily volume was calculated based on the 2016 DSM (without water), 

combined with the DSMs of other years (including amount of glacier recession). We found that the water-level logger 

measurements agreed with the water levels that were reconstructed from time-lapse camera data based on UAV DSMs. Using 

the same method, we also reconstructed the water level data between August 4 and 31 based on 10 satellite images from 

PlanetScope, Landsat-8/Operational Land Imager (OLI), and Sentinel-2 along with UAV DSMs, because we visited at the lake 120 

on 4 August 2019.  We also investigated the changes in lake area during 2017–2019 using PlanetScope images.  

Finally, we examined the climatic and thermal conditions using air and ground temperature data loggers (TR-52i; T&D Co.; 

resolution accuracy within ± 0.3°C) to log data at 1-hour intervals around the lake. Mean annual air temperature (MAAT) and 

mean annual ground surface temperature (MAGST) were calculated for 2016–2017.  
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3.2 Timing of appearance of short-lived lakes using satellite data  125 

Short-lived glacial lakes were identified using satellite images on ArcGIS 10.5. In particular, 91 images from Landsat-

7/Enhanced Thematic Mapper Plus (ETM+, SLC-off) and Landsat-8/OLI, 31 images from Sentinel-2, and 16 images from 

PlanetScope acquired during 2013–2018. The resolutions of these images are 15 m (pan-sharpened images of Landsat-7/8), 10 

m (Sentinel-2), and 3 m (PlanetScope). As a definition of short-lived lake, we use that in Daiyrov et al. (2018), which is based 

on its seasonal change in area from June to September of each year. Specifically, a short-lived lake is a temporary lake, lasting 130 

just one or two years, that appears or doubles in area, then disappears or shrinks within the same year. We counted the number 

that appeared from June to September each year. In addition, the number was tracked in each given year to examine how it 

changed from one year to the next. Polygon shapefiles of lakes were extracted manually from the images using ArcGIS 10.3.  

 

4 Results  135 

4.1 Areal variations of Korumdu lake        

At the front of the Korumdu glacier lies the Korumdu glacial lake (Fig. 2). It sits in a basin that formed during glacier recession. 

The basin developed inside an ice-cored moraine complex. Although most of the basin area had been covered by the Korumdu 

glacier, based on ALOS/AVNIR-2 data taken on 17 September 2007, the UAV ortho-images indicated a basin length of 360 

m, a width of 110 m, with total area of 0.062 km2 in 2019. The basin volume increased from 264,000 m3 in 2017 to 330,000 140 

in 2019 (Fig. 2) due to retreat of the glacier terminus. In the field, we observed ice ridging and debris sliding on the slope of 

the basin, indicating that the ice was melting from around the shore, thus increasing the width of the basin.  

The lake had no discernable surface drainage channel, but we found an outlet point (Fig. 2). The existence of the outlet shows 

that lake water flows through an outlet ice-tunnel from the lake. The length of the outlet ice-tunnel is 60 m from the entrance 

of the basin. Drainage water was observed at the outlet point in 2015, 2017, and 2019, but not 2016 and 2018.  145 

Concerning size changes, in 2015, the lake appeared in July, becoming large on 30 July, then shrank significantly by 21 August 

(Fig. 3). For 2017–2019, a more complete story of the changes appears in the images in Fig. 4, which are based on PlanetScope 

satellite data. The images show that the lake appears suddenly at the end of July to the beginning of August and then shrinks 

and vanishes by the end of August (Fig. 4a–c). Although the timing of lake expansion differs slightly over the years 2017–

2019, the lake always appears in summer. These satellite data demonstrate that the lake is a short-lived glacial lake.  150 

The time-lapse on-site images show the same behavior from a different view (Fig. 5). These images also indicate that the lake 

began to expand from mid-July and reached its maximum level at some time between late July and early August. In contrast, 

the lake area did not change dynamically in 2016. Based on Landsat-8/OLI data, we also found that the lake appeared in 2014 

(May 5, June 27, and September 10). Although these images show rapid drainage, we did not find evidence that the drainage 

caused flooding during the survey period. According to data in Narama et al. (2018), drainage from Korumdu lake is the flood-155 

wave type in the downstream region because the water stream flows on a gentle slope. 
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4.2 Changes in water level, area, volume, and discharge of Korumdu lake 

Consider the properties of Korumdu lake from 2017 to 2019. Figure 6 shows the measured water level, lake area and volume, 

and inflow–outflow discharge. For 2017, we also show the water temperature (Fig. 6a). We also reconstructed the water level 160 

data between August 4 and 31 based on 10 satellite images (yellow points in Fig. 6a). We calculated volume and discharge 

using the water levels and the UAV DSMs. 

In 2017, the water level starts increasing from 6 July, reaching a maximum on August 3, and then vanishes on 19 August (Fig. 

6a). In the first 29 days, the lake level increases 13 m, the volume reaches 234,000 m3, and the area reaches 0.36 km2 (Fig. 6a–

c). The resulting rate of volume increase was 8,070 m3/day. During discharge, 234,000 m3 of water drains in 17 days, with 165 

half of the volume draining from 3 to 7 August 2017 (Fig. 6b) resulting in a maximum outflow discharge of 0.66 m3/s (Fig. 

6d). Although the water level increases intermittently before August 3, the outflow is relatively smooth. The lake water 

temperature averaged about 1°C. 

In 2018, the water level peaks three times (Fig. 6a). The first, on 25 July, reaches 3.5 m and a volume of 21,000 m3 (Fig. 6a,b). 

The second, the yearly maximum, on 11 August, reaches 6 m and a volume of 53,000 m3. Finally, the third peak, on 17 August, 170 

reaches a level of 5 m and a volume of 39,000 m3. The maximum discharge occurs after the second peak, reaching 0.32 m3/s 

(Fig. 6d). Compared to the case in 2017, the maximum lake level and volume are much smaller in 2018. However, like that in 

2017, the inflow rate is also intermittent in 2018. The three peaks indicate that closure of the tunnel occurred several times 

during the 1-month period.  

In 2019, the water level goes up and down until 22 July, when it rises sharply (Fig. 6a). Then the level has a local maximum 175 

on 30–31 July, reaching 5 m and a volume of 53,000 m3, followed by a yearly maximum on 11 August, reaching 6.5 m and 

74,000 m3 (Fig. 6a,b). The maximum discharge occurs right after the second peak, reaching 0.24 m3/s (Fig. 6d). 

Considering all three years, the maximum water level is highest in 2017 (Fig. 6a). Over these years, other differences include 

the timing of the lake-level increases, the number of peaks, and the maximum water volume. All three years had small discharge 

rates (maxima of 0.66, 0.32, and 0.24 m3/s in 2017, 2018, and 2019), consistent with the lack of reported flooding.  180 

Concerning fluctuations, according to the water level data for 2017–2019, the level increased with repeated storage–drainage 

cycles. In the field, we observed sudden small increases of water level in 2016 and 2017, with the level increasing tens of 

centimeters within 3 h (Fig. 7). These results indicate that water level fluctuations occurred frequently due to closing and 

opening of the outlet ice-tunnel.  

We observed drainage water at an outlet point in 2015, 2017, and 2019, but not in 2016 and 2018. The reason we argue is due 185 

to the relative elevations. The water levels were 3,810 m on 21 Aug 2015, 3,816 m on 6 Aug 2017, and 3,810 m on 4 Aug 

2019, all of which are higher than that of the outlet point at the basin. However, we did not observe water drainage in 2016 

and 2018 because the water levels were 3,806.5 and 3,807.5 m, respectively (Fig. 8a,c). These results indicate that the entrance 

of the outlet ice-tunnel at the basin is at approximately 3,807.5 m, water level too low for drainage.  

 190 
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4.3 Surface changes around Korumdu lake 

Over a period of one year, how does the region near the entrance of the outlet ice-tunnel change? To answer this question, we 

compared UAV orthoimages with DSM data in 2015 and 2016 (Fig. 9). A comparison of Fig. 9a,b shows debris sliding, with 

horizontal backwasting of an exposed ice ridge by 7 m. The backwasting indicates melting occurred, which is supported by 

the UAV-derived DSMs in Fig. 9c. In particular, along the profile (a–aʹ; Fig. 9b) of the landform between 2015 and 2016, the 195 

surface elevation decreases by about 5 m. These results indicate that the surface motion and deposition of debris can cause 

closure of the outlet ice-tunnel during summer.  

In the northern part of the Teskey Range, the mountain discontinuous permafrost zone lies above 3,100–3,200 m (Daiyrov et 

al., 2018). Around Korumdu lake, the mean annual air temperature (MAAT) in 2015–2017 was –4.8°C and the mean annual 

ground surface temperature (MAGST) in 2015–2019 was –2.9°C. Thus, the buried ice of the ice-cored moraine complex at 200 

Korumdu lake is maintained under a permafrost environment. Melting of buried ice causes surface changes including 

expansion of the lake basin. In addition, melting can lead to closure of an outlet ice-tunnel such as that for a supraglacial lake 

on a debris-covered glacier (Sakai et al., 2000; Benn et al., 2000; Miles et al., 2016; Watson et al., 2017). 

 

4.4 Comparison to other short-lived lakes in the area 205 

Korumdu lake appeared during July–August and had relatively little drainage, whereas four other short-lived lakes that 

appeared in May–June caused large drainages and serious damages (Narama et al., 2010, 2018). The different appearance 

times might reflect different processes causing tunnel closure. To help determine how common these appearance times are, 

we investigated the timing of appearance of short-lived lakes in the northern part of the Teskey Range from June to September 

during 2013–2018 using Landsat-7/8, Sentinel-2, and PlanetScope satellite images.  210 

We identified and examined 160 such short-lived lakes during 2013–2018 (the total includes re-appearances of the same lake 

in different years) in the study area. In Fig. 10, we classify these by month of appearance. The appearance months with the 

most lakes are June, the snow-melt period, and July, the ice-melt period; specifically, 43 lakes in June and 90 in July. The total 

numbers and the proportions of the numbers in these two periods varied during the 6 years. This large variability was not 

directly related to local climate change (Daiyrov et al., 2018). 215 

Concerning re-appearances, 81 lakes appeared only once for 6 years. Of the remaining, 19 appeared twice, 7 appeared 3 times, 

2 appeared 4 times, and 2 lakes appeared all 6 years. indicating that tunnel closure occurred with a different month each year. 

Short-lived lakes that reappear many years likely have a tunnel condition in which closure occurs easily. 

 

5 Discussion 220 

5.1 Cause of outlet ice-tunnel closure at Korumdu lake 

In the case of ice tunnel closure, the supraglacial lakes on the debris-covered southern Inylchek Glacier in April–May are likely 

to appear due to the closure of englacial conduits when stored water freezes (Narama et al., 2017). The closure of englacial 

conduits on a debris-covered glacier can be due to roof collapses, creep closure, freezing of stored water, or deposition of ice 
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and debris (Gully and Benn, 2009; Narama et al., 2017). Collapse of an outlet ice-tunnel wall in a debris-covered glacier can 225 

occur by thermal and mechanical erosion (Sakai et al., 2000; Roberts, 2005; Bjornsson, 2010) or by ice deformation (Clague 

and O’Connor, 2015).  

For comparison, in the study region, the outlet ice-tunnel blockages could be caused by the freezing of stored water during 

winter or by blockage by collapsing with deposition of mixed debris and ice (Popov, 1987; Narama et al., 2010, 2018). In 

addition, changes in the ice-cored moraine complex due to subsidence or downwasting might cause a blockage in an outlet 230 

ice-tunnel (Daiyrov et al., 2018). The short-lived lakes here that caused the four large drainages (2006, 2008, 2013, and 2014) 

appeared in May–June and expanded in June–July (Narama et al., 2010, 2018). The timing suggests a closure that is caused 

by the freezing of stored water during winter or ice-debris deposition (Fig. 11a). We call this the deposition–freezing type. 

However, no case was reported in which the tunnel condition and water level fluctuations were compared in detail. 

In the case of Korumdu lake, the tunnel closed in July–August of every year since 2014 (excluding the case of no expansion 235 

in 2016) based on water-level of a data logger and time-lapse camera images. As we observed changes in the basin on the ice-

cored moraine complex caused by subsidence or downwasting (Fig. 9), the blockages of the outlet ice-tunnel at its entrance or 

interior likely was caused by deposition of ice and debris due to thermal erosion. This type of blockage is sketched in Fig. 11b. 

Further evidence that Korumdu lake forms by the deposition process comes from consideration of water-level fluctuations. 

The fluctuations of water level, such as spikes, reveal changes in the tunnel condition (Fig. 6d). A sudden blockage of an outlet 240 

ice-tunnel can cause a rapid increase in water level within even a few weeks. For Korumdu lake, the water increase was 

sporadic, indicating that the outlet ice-tunnel was not completely closed, the blockage was temporary, and the size of the ice 

tunnel is quite small. As a result, lake drainages can also occur any time in summer, depending on how the outlet ice-tunnel 

responds to the water pressure or thermal erosion.  

In 2017, the trend of water volume increase consisted of two parts: 5 to 25 July and 26 July to 3 August (Fig. 6b). The first 245 

period had sporadic fluctuations, indicating incomplete closure of the tunnel, but the second period had a smooth increase, 

indicating complete closure. The lake area reached its maximum value in 2017. This indicates that the period of tunnel closure 

was longer in 2017 than in 2018 or 2019. Longer closure periods are associated with the formation of larger short-lived lakes 

(Narama et al., 2018). Thus, the period of closure might be determined by the condition of the tunnel. 

Many of the other short-lived lakes that also appear in the ice-melting period are likely to be the deposition–closure type, for 250 

the same reasons we applied to Korumdu lake. For example, in Fig. 12, we show surface changes in the outlet ice-tunnel at the 

Jeruy glacial lake between 2014 and 2016. Ice melting caused large changes and rapid deposition within the outlet ice-tunnel, 

making closure likely. Thus, the surface condition always changes on an ice-cored moraine complex within the mountain 

permafrost zone, and the deposition–closure type is the major type in this region. Thus, the appearance of a short-lived glacial 

lake is inevitable in summer when the melting rate is high. The characteristics of this lake disaster might be shown in another 255 

Asian mountain permafrost regions.  

 

5.2 Relationship between outlet tunnel size and drainage scale 
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Of the 160 short-lived lakes we identified in 2013–2019, only Jeruy lake (in 2013) and Karateke lake (in 2014) had large 

drainages. The estimated maximum discharges from Jeruy (182,000 m3) and Karateke (123,000 m3) lakes were 14.9 and 11.5 260 

m3/s, respectively (Narama et al., 2018). These lakes had relatively large outlet tunnels, with Jeruy's cross-section being 4 x 2 

m2 (Fig. 12a,b) and Karateke's about the same or larger (not shown). Earlier, back in 2008, the w-Zyndan lake of 437,000 m3 

had a discharge rate of 27 m3/s (Narama et al., 2010). Most of the water in these three cases drained over a period of several 

hours. In contrast, Korumdu lake did not have a large drainage in 2014–2019, and its tunnel cross-section was much smaller 

than those of Jeruy or Karateke lakes. For example, in 2017, 234,000 m3 drained from the lake over 17 days, with a maximum 265 

discharge rate of 0.66 m3/s, about 20 times smaller than that of the two large drainages of Jeruy and Karateke.  

In addition, with Korumdu lake we observed sudden fluctuations of water level over several hours, which is behavior consistent 

with closure of a small channel caused by deposition. The relatively small tunnel size of this lake ensured a slower discharge 

even when it became full (330,000 m3). During 2017–2019, the lake size was largest in 2017, yet the discharge rates were 

nearly the same every year. These results show that the lake size and the dimensions of the outlet ice-tunnel are related to the 270 

scale of discharge.  

However, tunnel dimensions could increase in the future due to thermal erosion, allowing greater discharge rates. Meltwater 

and increasing temperature can accelerate thermokarst processes (Sakai et al., 2000; Kääb et al., 2001; Miles et al., 2018), 

enlarging the outlet ice-tunnel. In addition, although basin-size changes depend on the particular glacier landforms, the basin 

area in the case of Korumdu lake has increased each year due to glacier recession. If this applies to other short-lived glacier 275 

lakes in this region, large-scale flooding events during their discharge may increase in the future due to increasing temperature.  

 

6 Conclusion 

Our field survey found that Korumdu lake appeared and expanded from July to August and then drained over a period of 2–3 

weeks. The lake formed when its outlet ice-tunnel closed, which was due to deposition of debris and ice during summer. Later, 280 

the draining process was relatively slow because the outlet ice tunnel was small and the scale of discharge is related to the 

sizes of the outlet ice-tunnel and the lake volume. We argued that predicting the scale of a drainage requires knowledge of the 

outlet ice-tunnel dimensions and the lake's depression size. Our research method of combination between water-level data and 

UAV DSMs could estimate the discharge and the approximate dimensions of the tunnel. 

During 2013–2018, satellite data showed this region to have 160 short-lived glacial lakes, many of which had a similar timing 285 

of appearance as Korumdu lake. Four lakes that appeared a month earlier had large drainages, the only cases of large drainage 

in the study. Nevertheless, with a warming climate, any short-lived glacial lake might cause large flooding if the outlet ice 

tunnel and basin size sufficiently enlarge.  

The glacial lake outburst floods (GLOFs) which caused by moraine-dam failure such as Himalaya and Andes are minor cases 

in this region.  Short-lived lakes which caused by closure and opening of an outlet ice-tunnel in moraine complex are a major 290 

hazard in this region, because the short-lived lake exists on an ice-cored moraine complex within geomorphological and climate 

conditions of the mountain permafrost zone. In general, short-lived lakes should be monitored using satellite data and field 
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observations. These new knowledges are useful to understand the phenomena and behavior of the short-lived lakes and 

consider glacier hazard mitigation in the mountain permafrost regions of Asian high mountains. A threat of the short-lived 

lakes increases for the residents since 2000s. This hazard case might be major in Asian high mountains in present. 295 
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 410 

Figure 1: Study area in the northern part of the Teskey Range located on the south shoreline of Issyk-Kul Lake, Kyrgyz 

Republic. Red circles are short-lived glacial lakes that appeared in 2013–2018. Green squares with checks are short-lived lakes 

that have caused large drainages since the 1970s. The shaded relief map was created using SRTM DEM. 
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Figure 2: Geomorphological map of the Korumdu glacier front. The location of the glacier is shown in Fig. 1. Orthoimages 415 

were acquired by our UAV imagery in 2019. Contour spacing is 10 m. 

 

 

Figure 3: Korumdu glacial lake on 30 July 2015 (from a helicopter) and 21 August 2015 (from field observation).  
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 420 

Figure 4: Time sequence of satellite images (PlanetScope) of the Korumdu lake area during 2017–2019. 
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Figure 5: Time sequence of ground camera images of the Korumdu lake area during 2017–2019. 

 

 425 

Figure 6: Yearly Korumdu lake properties 2017–2019. (a) Water level (left) and temperature in 2017 (right). (b) Lake volume. 

(c) Water surface area. (d) Inflow–outflow discharge. These data derived from 2017 to 2019 based on water-level logger (Hobo 

U20) data, UAV DSMs, time-lapse camera, and PlanetScope satellite images. 
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Figure 7: Two examples of a sudden small increase in water level. (a) On 12 August 2016. (b) Same as (a) except 3 hours later. 430 

(c) On 6 August 2017. (d) Same as (c) except 2 hours later. Images taken in the field. 

 

Figure 8: One-day drainage from Korumdu lake. (a) On 12 Aug. 2016. (b) On 6 Aug. 2017. (c) On 20 Jul. 2018. (d) On 4 Aug. 

2019. Orthoimages are from our UAV imagery. 
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 435 

Figure 9: Surface features and elevation profiles of the debris landform at the entrance of the outlet ice-tunnel based on UAV 

ortho-image. (a) On 21 Aug. 2015. Left red line shows the position of the exposed ice edge line of the debris surface before 

the ice-cliff underwent backwasting and melting. Right red line shows the deposition line of boulders on the slope. (b) Same 

as (a) except 12 Aug. 2016. The blue lines show the new positions after one year. (c) Elevation profile of the surface along 

line a–aʹ in (b). 440 

 

Figure 10: Total number of short-lived lakes in the months of June–September during 2013–2018 in the northern part of the 

Teskey Range. 
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Figure 11: The two types of ice-tunnel closure in the region. Sketches show cross-sections through a glacier, lake basin, and 445 

ice-cored moraine complex in the case of a short-lived lake (based on Popov, 1987). (a) Deposition–freezing type of closure 

that appears when an outlet ice-tunnel is blocked due to the freezing of storage water or deposition of debris and ice. (b) 

Deposition–closure type that appears when an outlet ice-tunnel at the entrance or interior is blocked due to deposition of debris 

and ice by thermal erosion (ice melting). 

 450 

Figure 12: Basin and outlet ice-tunnel of Jeruy lake, which drained in 15 August 2013. (a) Lake basin of Jeruy lake on 9 August 

2014. White arrow shows the direction of drainage flow. (b) Outlet Ice-tunnel for the drainage channel on 9 Aug 2014. (c) The 

outlet ice-tunnel area on 9 August 2014. White circle in (c) and (d) shows the same location. (d) Same as (c) except on 9 

August 2016. 
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